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An account is given of very simple methods of refw the classloal theory. 
These mr-thode result from an a8ynptOtlC approaoh to the constru@tion of the 
two-dimensional eqtkione for the bending and extension of plalXW euggeated 
In Cl and 23. 

the 
It was proved In Cl to 5) that the equatiolldl and boundary conditions In 

classical theory are ldentleal with the eqrrsf;fans enU eeMWioni3 
for the zeroth approximation In the basic iteti%ive proeesr. Ifore it is 
shown that, 3.n oiler to refiah the rtste oi lrtmrs &t the hadQ of t&e plate 
(In the tern of the sums order a# the baulc straew~ in tha ~sSa&l the- 
ory), the state of stress deter&ned In the alissleail theory n&t 3s 6q?ple- 
mentad by a state of stress due to the edge tarrlon and the ply deferuation 
at the edge. It is a380 shown that, ln order to ref 
the cla8slcal theory at point8 di8tW ~IWB the edge “e 

the reti- @WBn by 
the 00arrW~WYn of an 

approximate theory for which the error6 %n the rlmerm h89e the oz?barr Pia, 
and YiOt h , with reaped to ?P), one aust retrin o~~t2om vi #r al*ssltral 
theory but certain alterations should be made In the w AoDsdiefonrr. 
The fomn of the new boundary contkltiona for a free, a slmpl~ supported, and 
fully fixed edge will be fonaulated. 

1. The middle surface of the plate will be referred to the aurvilinear 
coordlnatee a , 6 . The coordinrrte 

r 
will be measured from the middle 

surfaoe along the normal to It. Use w 11 be made of the awcilw variablea 

It le assumed that the edge of the plate ikrerponds with the coordinate 
line a - a, (q- @and that this line Is smooth. Aa in Cal, we will cron~l- 
der the sygaWirla problem (oorrm 
problem (~orreepondin&$ to bend- 

riding to etienslon) and fha mtimtrlc 
v” . 

me co&tions on the upper and lower surfaces of the plate have the form 

for the antisyaxmetrle problem 
ci YY = + l/z P (a, P), bay = ‘/zh-‘P, (a, P) (up) when 5 = z 1 

for the sylsletrlc problem 
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Here and in what follows the symbol (a@) will be used to denote the eXZst- 
ence of a second relation derived from the given expression by changing a 
into s , and vice versa. 

As has been shown in [l and 23 and also (for the case of free boundaries) 
in [4 and 51, the asymptotic method of deriving the two-dimensional equations 
of the theory of thin elastic plates reduces to the construction of two forms 
of the state of stress (basic and boundary), each of whiah can be constructed 
with the aid of an appropriate iteration process. (In the foreign literature 
14 and 51, the concepts of the interior problem and of the boundary-layer 
problem have been introduced). Moreover, if Q is any one of the stresses 
or d~splaee~nts in the total state of stress in the plate, it can be expres- 
sed 3.n the form 

(I .2) 

84 s=o 

The first term zn (1.2) represent what has been called the basic State of 
stress In El]. It extends throughout the whole plate and is detersdned with 
the aid of the basic iteration proaess. Ihe index $T1 assumes the following 
values: 

Ql = 2 for cIaoIs Ql bppa qI = 1 for say’ 6~~ 

Ql = 0 for ayyt q1= 2 for u,, ur3 
0.3) 

q1 = 1 for W in the sysnnetrlcal problem 
CIl = 3 for w in the sntlsymmetrical problem 

The stresses and displacements In the basic state of stress can be repre- 
sented in the form of ~01~0~~s in C , where the degrees of these poly- 
nomials increase as the order of approximation increases. For the first two 
approxlmatlons the dependence of the stresses and displacements on the vari- 
able c is determined by Formulas 

in the symmetric case 

Bw(‘) zz - y (f,,@) + zp) 

in the antlsysnnetric case 

a$) = <V,(i) (a$) (o&, caa@) = S’$) (a, 3) (a@) 

bay@) = q$) 6% 8) + CQf(a, 3) Wf (1.5) 

CQ) = &(Q (3,3) + r;e)tyy@f (a, 3); @ tit = _ H &Ji) 
0 “-G-- WB) 

J‘$r@) I (S=c* 1) 

The eqtNilon8 that detem%ne the cosfficrients of these polynotials are in 
each axmmximation analogous to the equationa In the alaasleal theory [ 23, 
Bar tha #moth 8pproxinstlon they are identioal with the equations in the 
olurlaal theory and oan bs reduoed to a nonhomogeneous blharmml 0 equation. 
In the first aPProxiutiOn, they ma reduaed to a homogeneous bihamonlc 
equation. %?hua, there ooeff~aiantr are completely determinate, provided In 
each approxiratlon one has two boundary ocndltlons on the edge s I a0 . 

The 6fmmd term in (1.2) rewimenti the bounderplayer state of stresses 
whioh WciliLJ bups with distanes f'rcen ths edge, and can be determlnsd with 
the aid of an auXZliaz~ Iteration proosss f2). Tha index Q* assumes the 
rollowing valuss: 

9z = 2 for @aacrt %a~ Qcly* apj3t G@Y* dyyr 9s = f for U@’ z$, w Wt 

‘pho l uxlli8x-y iteration prochsss oonsista in repeated inkgration of the 
ny8tem8 of equat%ona for the a 

T 
torsion aad the plaae deformtion at the 

edge. These ewatfoar were der vrnt in 123. Utili~ (1.1) and m the 
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first two terms of the Taylor series for a,, Ho and $ at the point a - a,, 
the above equations for s I 0, li 2 can be written ti the form 

-k boip(8-1) .f kpo2E”8(S-2) J 
E ----2(1+~)$,py(~)=-E a@-1) 

a: ag 
_ kpo IIpoE aw -‘) 

a3 I (1.7) 

a% -,- y = - I_180 f$!!-&$! + kPo H&E a’$-z’ kpa (;,‘,“-I) _ ;af-“3 + 

where HEKl = qi I,_-, and kBo = k P a=clp Is the curvature of the edge a= co. I 
Any one of the stre&ses or displacements can be detrmlned In the form 

o(i) = Q($ + Q (0 
(2) 

and It can be assumed that 

Q(t) = Q,# = Q 
(2) 

tfJ = 0 for t <o 

The quantities Q(1) (‘) and QC2)“) can be determined so that 

(1.9) 

(1.10) 

(1.11) 

(0) = &N1) = s (0) - 0 (0) - cLJl)l) = w(l)(o) = 0, -((I) _ 
%ci(l) flp (1) - YY (1) - %p (2) - $\a, = UP (2) = 

(Of - 0 

.n, taking all terms ln(l.7) and (1.8‘ w3.~ho~ubscr($ts (1) or (2), we 
obtain a system for the determlmation of Q(I) Q(2) 9 

respectively. 

harmonic and blharmonic equations 

ha??!%~ Em?:, 
one must construct for both systems solut$ons which ~FZ d-d out 

as 5 - .- ID and which satisfy the followlrkg conditions: 

for (1.7) 
Q&Q s 

93?)(l) -i- QBY (2) - 
(6) - 0 when c=ki (1.12) 

for (1.8) 

0 (8) f (1.13) 
azy %t”‘cI, + %Y (2) - 

(S) - 0, Z,(S) zz Q .y _ Y$l) + ~&f)(2) = 0 when 5 = -+I 

The conditions for the existence of damped solutions of systems (1.7) ani 
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(1.8) can be written In the following form c21 

- kB, :,I”-” + ka~~~,t”-2’ 
II 

d6 
(1.14) 

!Che conditions (1.14) ln the antisymmetric problem and condltlons (1.15) 
in the synnnetrlc problem yield .two sequences of boundary conditions on the 
edi3e a =a0 S ( = 0) for the coefficients of the expansion (1.2). The bound- 
ary conditions on the edge surface 

d OLa = 6,p==5,y=o, aa=6ap=W=0, d u,=u,=w=o for u=uo 

which correspond reepectively to a free, simply supported, and fully fixed 
edge, each yield three sequences of boundary conditions for the OOefflClentS 
In the expansions (1.2). They can be written in the form [2] 

when a=ao(4=0) 

c,',"'+ Q'c,,i- cQ$) =O, %$'(l, + QorP(2) -- 
(SJ - 0, &-l) 

+ %'y"'cl, + %(a) - 
(5) -0 

(1.16) 
(s) I (8) 

Qua 7 oa, (1) + “& 1 0, a$) $- a&, + ${aj = 0, w(s) + W(*)(Q) + W(,)(a) == 0 

(1.17) 

U$) + u&l) + U$$'= 0, ug(@ + uP(&*) + "P(;2jl) = 0, w(s) + WC&Q) + W(2)(a) zz 0 

(1.18) 

where -c-s for the symmetric problem and a = e - 2 for the antlsymmetrlc 
problem. 

The arbltray constants of integration of the equations of the basic and 
auxiliary iteration processes must be used to satisfy the boundary conditions 
on a-a 
sufflclen 

C& (c - 0) l 
In [2] it was shown that these arbitrary constants are 

for satisfying not only conditions (1.16) but also conditions 
(1.14) and (1.15). 

For the sake of slmpllcltg we will use R(") to denote the function deter- 
mination of which gives the solution of the system of equations of the basic 
Iteration process In any approximation. Similarly Y(') and CD(') will denote 
the functions for solution of systems (1.7) and (1..8), respectively. 

The equations determixIng B(S),Y(S) and c#I@) are Integrated separately. 
It Is most lmportant (I) to separate also the doundarjr value problems arising 
from the boundary conditions to be satisfied by the aboye functions, (11) to 
fix a sequence of determinations of the functions J$~), Y(*) and Q(S) and 
it::! to formulate the boundary conditions separately for each of these tic- 

. 
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Below, we have considered this question for the functions B(O), Y(O), CD(O) 
and ,$l),whlch suffices for the purposes of this pa 
and symmetric problems have been treated separately r 

r. (The antlsymmetrlc 

Note . 
for s = k . 

In the following, the notation (1.16)~ means Equations (1.16) 

It Is assumed that the quantities QiiI and Q($ vanish as 5 - - 0~ 
faster than an arbitrary negative power of t . 

2. In the antlsynmtetrlc problem with a free e 
T* 

tine determ$natlon of 
the constants of 
the use of conditions 

ln ~(0). B(I), Y(O), Yfl , @to) and m(l), requires 

which, with the 
(1.16) and also condfilons (1.14),, (l.lS), 

, '(1.19) knd (l.ll), can be transformed into 
the form 1 

(2.1) 

(2.2) 

(2.3) 

Let us oonslder the auxiliary Problem 1. We will oonatruot the solution 
a~[11 of’ the homogenco\llr sgot~pl of -tloM (1.7),, in ehc half-SkF*p 
--lf561,E<o, which Satisfies the conditions 

%k1' ?++_I-- - 0, Q[l'j _ 4-+= 0, o$'lilo = - 5 (2.5) 
-,- 

The solution of this problem Is easily found, for example, by separation 
of variables, ln the form 

64 
(11 = ay[ll/a;, 6pFl = a+] /a<, Eup .== 2(1 + Y) Y[l' 

where the harmonic function Y [II Is represented by the series 

(2.6) 

men as follows from the second condition (1.16), and the Equation (l-5), 
the f&tlon $0) Is determIned by Equ+tlW 

Y(O) = t&y’ (uo, 8) Y[ll (2.7) 

Now we ~111 consider the sequenoe of boundary ConditioIM to be inlpoaed. 
mom mpation (2.1) and keeping (1.5) in mind, we obtain 

c (0) = 0 Ior c1 = a, 

mn as it follows from t: first and third conditions in (1.161, 

(2.8) 

and from 

(1.11) that (0) _ - (0) - 0 
32.x (2) J1 U(2) - for E=O (2.9) 

and hence Q i0) ~ () (2) - t .or CJdO) z 0 (2.10) 

me functions J$") will be detrmlned by (2.1) and (2.3)~ which, with the 
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aid of (2.6), (2.7) and (2.10), can be represented ln the form 
1 

dc = 0, 

-1 

The solution of system (1.7)~ will be wrLtten in the form 

where Q[lj Is the solution of Problem 1, and 'Q;!:' 1s the partiOtiar 601~ 
tlon of the nonhomogeneous system (1.7), that eatlrrflea the homogeneous con- 
ditions on f = 0 . 

The funotlon Btl) will be determined by taking the bo 
(2.2 
and t 

and (2.4) lnto acoount. 
1.8), 

llaep~ (2.121, (2.61, (2??rf2%!3"?% 
In mind, the above conditions can be written In the form 

1 

= 1.26009 (2.13) 

Then we determlne $1) by Formula (2.12) and CD(l) by taking boundary con- 
ditions (1.16)~ into acoount. It Is earllq seen thdt the prooess of deter- 
mining the functiona 18 reourslve in naturC, i.e. all qkntltles required at 
the nth stage are iound f?om the preoed%n$ stages. 

e la simply supported, we consider the boundary aondltlons 
and the third equation ln (1.17)* which can be written ln 

for a=u,(E=O) (2A4) 

and the damp- condltlone (2.1) and (2.2). Inspd of Equation (2.3) we 
will here use the damplng condition obtained In 63 

y \l%$;,,/,$-& { P-W'&")j~__Od~=O (2.15) 

-1 -1 

We will ellmlnate"the quantity WC') 
the fact that a,,(o) I,=, = 0. 

from (2.14) by mean8 of (2.15) and 
a8 a consequence of (2.1) and (1.15). Then 

from (2.14) and sne fir& equation ln (1.16), we obtain the boundary condl- 
tlone for m(O) ln the form 

W@)(O) = -Y z iOE &V- 5C2) for g=O(a=a,) (2.16) 

Let ua now consider the auxiliary Problem 2. We will construct the solu- 
tion Q[S] of the homogeneous ryetem (1.8), ln the half-strip --1 < 5 <i, 
5 < 0 which satlafles the condition8 

G~[~~II~=,~ = ~'talI,=~, = 0, Q[a'IE=_-oo = 0, G&')~=~ = 0, BW["le=c = 1 -5P 

Then the quantities Q(O)(2) (the function m(O) ) la determined by Formula 

(0) - 
Q(2) --% ' ~&")(ao, P) Q12] (2.17) 

Now we will peraue the succeeelve determination8 of the functions B(O)* 
B(l), y(O) and m(0) . The function ~(0) will be determlned by (2.1) and the 
third equation In (1.17), which hae the form 

1 
,(O) = 0, 

\ 
* ,$ (O)q = 0 ill for a = c&J (2.18) 

-11 
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Then we determine ~(0) by Formula (2.7) and (DC’) by Formula (2.1’7). The 
function B(l) can be determined from the third condition In (1.17)1 and con- 
dition (2.2), which Is easily put in the form 

w(1) = 0, 

1 

c &T,(,” dc = - -$ A 
a\$) 
_-2k BzJPB) 

-1 a% 3 so 
for a = a0 (2.19) 

-1 
It 1s easily seen that in this case the process of determining the bound- 

Is rigidly fixed, the determlna- 
by uslng conditions (1.18) 

(1.14), which by virtue of yi.9) 

(2.20) 

Now we will treat the auxlllary Problems 3,4 and 5. We will construct 
the solution of the homogeneous system (1.8)~ in the half-strip -1< c< 1, 
-L Q E < 0 ( L is a sufficiently large number) subject to conditions’ 

ULx fEza = 0, w i,=, = ca for problem 4 

‘Ia lezO = 5s IV Lo = O for problem 5 

The solutions of Problems 3, 4 and 5 will be denoted by 
~151 , respeatlvely. 

~131, $*I and 

Then, by virtue of (2.14), (1.5) and the first equation ln (1.18), we have 

Qm (0) = _ ,(Z) (sot P) QL3]+ ' IT co) (ao, P) + q$‘) (x0, P)] Qr4] - v, 
2E aa 

(*) (ao, p) QL51 (2.2l) 

Substltutlng (2.21) Into (2.20) and solving the resulting equa%iORS for 
,f2k and #,, we have 

,(2) = K 2; (<$ + %@Clo’), ,(Jl) z!z G v fz,c,) + Z@fP’) 
2E 

for a = cl, (2.22) 

where the constants C and p can easily be determlned If the solutions of 
Problems 3, 4 and 5 have been found. 

Now we wlll ersue the succesalve deter~~t~ons of g(c), @, Y(c) and@*’ 
The function ~0) -is determined by the first and third conditions in (1.18)~ P 
whfch have the form 

,(O) z.z cl, @Jet 5 9 f-1 a=a, (2.23) 

(1.18) is satisfied identically). We will deter 
the al% of the second condition in ( It 

third equation ln l’and 
the aid of the third equation 
i.e. the co~~t~ons 

up ZzE 0, 2) 0) = c 11_(% (0) _/_ $“) 
n 2E pa 

for a =a, (2.24) 

The function ~(0) will be dete 
rm?e 

d by means of (2.14) snd the first 
equation in (1.18), . Moreover, @J can be expressed ln terms of the SOhI- 

tions of the Problems 3, 4 and 5 by means Of Pommels (2.21). 
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3. Now we will turn to the question of constructing approximate methods 
of refining the classic bending theory of plates. 

From the viewpoint of asymptotic methods, the problem of consttuctlng 
various approximate theories of bending (and extension) of plates can be 
regarded as a problem of constructing a certain number of approxlmatlons In 
the basic and the auxiliary Iteration processes. In [l and 3 to 53 it was 
shown that, In the case of a straight edge or a curved free edge, the clas- 
sical theory ls’equlvalent to the problem of constructing the zeroth approxi- 
matldn of the basic Iteration process. Below, it has been shown that this 
Is also valid for the present variants In the case of an arbitrary smooth 
curvilinear boundary. 

As Is well known cl and 21, the equations of the zeroth approximation In 
the basic Iteration Drocess are Identical with the equations of the classlL 
cal bendlrrg theory o? plates. It Is not difficult to verify that the bound- 
ary conditions for ~(0) are also Identical with the boundary conditions of 
the classical theory. 

For t - 0, 1 we will employ the following expressions Introduced In [2]: 

,o(i) = Q-3 ,(i) 

Then, keeping (1.5) In mind, Expressions (2.11), (2.18) and (2.23) lead 
simply to the usual boundary conditions of the ClaSSICal theory 

for a free edge 

M,(O) = 0, 
i?H (O) 

Nate) + - QB =(I 
% 

fm a=a, 

for a simply supported edge 
M (1 (0) = 0, WJO) = 0 for a =a0 

for a fully fixed edge 

too(O) = 0, aw,(o) _ o 

asa for u = a, 

It should be Dolnted out that In contrast to the classical theory the 
zeroth approximation in the basic Iteration process can also be used to 
determine the stress ouu, 
anlsotroplc materials). 

(It may be substantial, for example, In certain 

The remaining approximations In the basic Iteration process and all approx- 
imations In the auxiliary Iteration process give the corrections to the clas- 
sical theory. Therefore, by llmltlng oneself to various numbers of approxl- 
matlons of the basic and auxiliary Iterative processes, one can construct 
various approximate theories which with the corresponding degrees of accu- 
racy will decrease the error ln the classical theory either at the edge or 
at a distance from the edge. Of all these theories, we will only consider 
two In this paper. The first makes It possible to refine the results of the 
classical theory near the edge of the plate, which Is Important for example 
In problems on the stress concentration near holes. The second theory 
refines the results at points distant from the edge. 

As follows from (1.2) the order of the stresses and displacements [ 33 
determined by the zeroth approximation In the basic Iteration process will be 

d aa’ Q’ 6pp - h-a, %Y’ Qpu- h-1, Gyy -h”, u,, up - h-2, rv - h-8 (3.1) 

Near the edge of the plate, boundary-layer stresses determined by the 
auxiliary Iteration process will be superposed on the basic state of stress. 
In the auxlllary Iteration process the quantities q,w, “by and up can be 
determined from the equations for the edge twisting (@a) 
“CZCL~ ocy* o&31 ov.(* ua and W are determlned from the e&ii% % g?$g: 
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deformation (d”‘), at the edge. Moreover, It follows from Seatlon 2 that, 
depending on boundary conditions on the edge with s - 0 , one (but never 
both slmultaneousl 
IS round from (1.6 T 

) of the states of stress at the edge can be absent. As 
, the ordera of the stresses and displacements for the 

zeroth approximation in the auxiliary Iteration process will be 

It follows from (3.1) and (3.2) that, for any of the considered variants 
of boundary COtiditlOnS, the error allowed by the classical theory of the 
edge of the Plate will be small ln the case of the dltaplaaements. However, 
in the case of the stresses (all or some) the error will be of the same order 
as IA the baeia stresses in the clssslaal theory. Thus, when it ls,very 
ilnportMt to determine the stresses at the edge of the plate, itls *uffici- 
ent to limit oneself to the classical theory for the aonstruotlon of the 
State of stress even In the zeroth approximation. 

The asymptotic method makes It possible to very simply formulate an 
approximate theory that allowa the construction of the zeroth approximation 
for the state of stress either removed from the edge or at the edge. It Is 
easy to see that the essence of the method Is that one superposes boundary- 
layer stresses determined by the zeroth approxlmatlon In the auxiliary lter- 
atlon process on the state of stress determlned by the classical theory. 
Using the notation B@). y('). @', the problem of setting up such a theory 
can be fo 
n(O) and ""r 

ated as the problem of construatinp the following fun&lOns: 
Y") for the free edge, B(O), y(O) and @to) for the a%n@y sup orted 

edge, or ~(0) and ($0) for the fully fixed edge. ‘@he boundary eO?Ullt ens P 
for these functions and the formulas with which one determines y(O) and (P(O) 
were given In Section 2). The error in such a theory for the stress ~111 
everywhere have the order h compared with ho. 

The aaJnnptotlc method also enables one to very elmply set UP an approxi- 
mate theory that makes the classical theory'more exaat only at a dlstanae 
from the edge. Such a the0 

'9 
will cou@rlse the first I%0 aWr0x;lastiOns Of 

the basic Iterative prooess funcrtlons ~(0) and &l)). As has been shown 
earlier [I to 33, the 

tS 
onstructlor. of the first ~pp~oxlmMlOn in the basic 

iterative processes (B ) reduces to the solution of a h0m0f$sneous blharmo- 
nit equation (In a@ j with nonhomogeneous condftl0tM whlah, in the termlno- 
logy of the alasslcal theory, can be represented in the form 

for the free edge 

. a 

for 

for 

Wo(') = 0, 

the simply supported edge 

wo(” =1 0, 
m,(p 

M (‘)=-h/l_- ct 
8s” 

BkeohMr’ for a =a, 

e 

the fully“flx.ed edge 

aw 0’ 
-!?-= 2&&-) C 
%a 

h (M,(P) + M,$“) for a = .o ( D- 2Ehs 
3 (I-_ ) 

m oomblnln@ B(O) and B(1). we obtain an rpproxiaote method of Mfinfag 
the classical bending theory for plater tbt will colmirt l!i the oaMtW&ion 
of a solution oi’ the aquati0M of the alMsi@ th+0ry cub to %he fOxlo*- 

b0undmpvdlue a0nditlOns (to ux aoc*aay 0r 
$?o~f:%th h”). 

of th% order 

fo? the free edge 

3H 
M,+Ahs=O, 

a 
N, + as (Ha8 + ~4kkBoflap) = 0 for a = a, 

B 

for 'the simply sunoorted edae 

Ma+ Ah- aaH,aa + BkaohMp = 0, w. = 0 ior a = CL0 

P 
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for the rigidly fixed edge 

The error of such a theory will have the order ha compared with ho. The 
attempt to further refine the classical theory (determination of errors of 
order ha compared to ho ) leads to the necessity of adding corrections both 
to the equation of the classical theory and to the associated boundary con- 
ditions [ 2 and 31. 

4. In the synm&rlc problem the constant of integration In the equations 
for B@’ Y(@ and &“’ must be used In order to satisfy the boundary condl- 
tlons (1.16) to (1.18) and the damping conditions (1.15). Without dwelling 
on the transformations which are analogous to the transformations for the 
antlsynmmztrlc problem, we will formulate approximate methods of refining the 
classical theory at the edge and at a distance from it. 

In the case of a free edge, the classlcal theory (the zeroth approximation 
In the basic Iteration process) has at a distance from the edge an error ln 
all stresses of the order ho compared with ho. 
o,p: and 

At the edge the error ln 
opY Is of the order ho and for uorcr, our, aPB and uYY the error Is 

of the order h compared with ho. 
Therefore, when the plate has free edges the classical theory enables one 

in the zeroth approximation to construct states of stress eltiier at a dls- 
tanca rom the edge or at the edge. If the edge Is simply supported, then 
at a distance from It the error In the calsslcal theory In all stresses Is 
of the order h, and at the edge the error In (Jacrs ooYt Up@ and ouu Is of 
the order ho, and ln amp and upy It Is of the order h compared with ho. 

The approximate method, which makes it possible to construct In the zeroth 
approximation the state of stress not only at a distance from but also at the 
edge, consists ln the construction of Mctlons ~(0) and @(O) from the follow- 
ing boundary condition 

for B(O) 

,lY (0) = ta(BO) zz? 0 aa for a = a, 

for 00 

a&$) = 0, EW(2) ‘0) = y&,jp) for &= 0 (a = ao) 

The approximate theory that allows the refinement of the olasslcal theory 
Only at a distance from the edge consists In the construction of a solution 
of the equatlons of the classlcal theory subject to the conditions 

z aGL - hAlvkao$B = 0, zcla + h-&v as - 
%P _ 0 for a = a, 

B 
-1 

where c “I 1s the SOlUtlOn of the homogeneous system (1.8), subject to the 
condltloai;(a 

ocL[,“’ IL+ = c$’ IC=+1 = 0, Q[” le=_, =O, a,$ Itxo= 0, w[‘] i,=, = - 6 

The error in such a theory at a distance from the edge has the order ha 
compared with ho. 

In the case of a fully fixed edge, the construction ln the zeroth approxl- 
matlon of the state of stress at a distance from the edge and at the edge 
necessitates the determination of the functions ~‘0) and ~(0)’ subject to the 
following boundary conditions 

for I B(O) 

ULz 
(0) = vp(o) = 0 for a = a0 

for o(O) 

Eu,‘f’) = - BIV (.s,(,o) + q$‘), EWt2)(‘) = vc (t$‘) + z$‘) for < = 0 
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In order to refine the data of the classical theory at a distance from 
the edge (the derivation of corrections of order h compared with ho) one 
must construct a solution of the equations of the classical theory subject 
to the following modified boundary conditions 

vB = 0, Ev, - hB1v (z,, + t&J = 0 for a = a0 

and Q[73 and QPI are solutions of system (1.8)~ with the conditions 

%y <z-&l I ==YY &*I= I 0, Q )t=_-03 ==o 
ua It=, = 0 for Problem 7 

uU J_ = 1 for Problem+ 8 

5. The above-considered symmetric problem is the problem of the extension 
of a Plate by forces applied to Its faces. Now we will consider the physl- 
callY more interesting problem of the extension of a plate by forces applied 
to it6 edge surfaces. 

We ~111 88Sunke that the faces of the plate are stress-free 

d CIY = GfjY = bYY = 0 for 5 = zki 

and the conditions on the edge a I a, (5 I 0) have the form 

Q (LoL = = (a,, P, 0, Q, = b (ao, P, 0, oaY = c (a~, P, b) for a = a0 

It Is assumed that and TV are even functions of 5 and o 
and that they do not de&d on h 

1s odd, 
!l?he generalization to the case where 

these functions are proportional ti some power of h or csn be represented 
in the form of polynomials of h does not present difficulties for the 
linear problem. 

It can be shown that In the present case one must.choose the following 
values for Q~ and &? e 

q1=u for Qaa, Y+' Qp!$ g1=--1 *or 6ccfl GPY 

q1=-2 I= Qyy, q1= 0 for u,, up' q1=---1 for w 

q2 =; 0 for Q,,, d,qr 6,y.yl +a, 6@,? C.(.f 

q2=-1 I for “,, UQ’ w 

The system of equations for the basic state of stress comprises the usual 
equations of the plane problem and when s = 0, 1 can be reduced to a homo- 
geneous blharmonlc equation. 
have the form (1.7) and (1.8). 

The equations for the boundary-layer stresses 
The boundary conditions for the coefficients 

of the exPcpans$on (1.2) are obtained with the aid of a procedure written in 
[ 1 and 23 In the form 

6 (S) - (S) W + Q&J + Q,, (2) - (1 
(5) 

(IO. 7 b$ + ci 4 (1) 
+ 6a’a”‘(z, = b(“’ 

0 P-1) + q$,s',, + 6,$@0() = 8) 
0.Y 

for a=cxo 

(a(O) = a, b(O) z b, do' zz c, @) = b(k) =+) z 0) 
(k>O) 

Adding here the damping conditions (1.15) we obtain five sequences of 
boundary conditions on a - a0 for the f'UWtionS II(*) q(') and (D@) 

me appr0xirnat.S theory that enables one to refine the results of the clas- 
sical the0 

7 
near the edge of the plate consists in the con&IWct~on of 

functions B 0) $0) and ,@) subject to the following boundary condltlons: 
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for B(O) 
Qo’ z ; 

1 1 

s a 4, Q’ = ; s b4 f0r a = a0 

-1 -1 

for Y(O) 1 

ca$, = b - ; s b4 for 4 = 0 

-1 
for 0’ 1 

ba(?O)(2) = a - ; s a 4, % (2) 
(0) = c 

for t = 0 

-1 

The error of such a theory for the stresses everywhere has order h com- 
pared with ho. 

It should be noted that in the case when c and b do not depend on C 
and c G 0, the function y(O) and (p(O) are identically zero and the state of 
stress In the zeroth approximation far from the edge as well as on the bound- 
ary can be constructed with the aid of the classical theory. 

The approximate theory that allows one to refine the classical theory only 
at a distance from the edge conslstes In the sllutlon of the (homogeneous) 
system of equations of the plane problem with the following boundary condi- 
tions on Q = a0 : . 1 

The error In this theory at a distance from the edge has order ha com- 
pared with ho. If c E 0, this theory coincides with the classical theory. 

The author offers his deep gratitude to A.L.Col'denvelzer for proposing 
the problem and for the assistance rendered during the course of the work. 
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