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An account 1s given of very simple methods of refining the classical theory.
These methods result from an asymptotic spproach to the construetion of the
twofdme:ut]mal equations for the bending and extension of plates guggested
in {1 and 2].

It was proved in [1 to 5] that the equations and boundary conditions in
the classical theory are identical with the equations and doundsry conditions
for the zeroth approximation in the basic iterstive process., Here it is
shown that, in order to refine the state of stress at the edge of the plate
(in the terms of the same order as the basic stresses in the classical the-
ory), the state of stress determined in the classical theory must be supple-
mented by a state of stress due to the edge torsion and the plane deformation
at the edge. It 1s also shown that, in order to vef the results given by
the classical theory at points distant from the edge (the constyueticn of an
approximate theory for which the errors in the stresses have the order »?*,
and not A , with respect to »°), one must retain equations of the clessical
theory but certain alterations should be made in the boundary oconditions.

The form of the new boundary conditions for a free, a simply supported, an
fully fixed edge will be formulated,

1. The middle surface of the plate will be referred to the curvilinear
coordinates o , B . The coordinate will be measured from the middle
surface along the normal to it., Use wx.ll be made of the auxiliary variables

{ =

a
2 v 1 S do (1 1)
_}:l" S R *

) H,
QLo
It is assumed that the edge of the plate corresponds with the coordinate
line a =g, (£=0)and that this line is smooth. As in (2], we will consi-
der the symmetric problem (com-smndmg to extension) and the antisymmetric
problem (corresponding to bending).

The conditions on the upper and lower surfaces of the plate have the form
for the antisymmetric problem
S.y==tlap(a, B), oy, =Yehp, (¢, B) (ef) when {==1

for the symmetric problem

o, = g (@, B), Opy = * Yo hqy (@ B)  (ap) when§ = £ 1

914



Refining the theory of bending and extension of plates 915

Here and in what follows the symbol {(q8) will be used to denote the exist-
ence of a second relation derived from the given expression by changing o
into 8 , and vice versa.

As has been shown in [1 and 2] and also (for the case of free boundaries)
in (4 and 5], the asymptotic method of deriving the two-dimensional equations
of the theory of thin elastic plates reduces to the construction of two forms
of the state of stress (basic and boundary), each of which can be constructed
with the aid of an appropriate iteration process. (In the foreign literature
{4 and 5], the concepts of the interior problem and of the boundary-layer
problem have been introduced). Moreover, if ¢ 1s any one of the stresses
or displacements in the total state of stress in the plate, it can be expres-
sed in the form

S S
Q=4 N AQE 4+ 17 3B Q[+ Q™) (1.2)
e ] $=0
The first term in {1.2) represent what has been called the baslc state of
stress in [1). It extends throughout the whole plate and is determined with
the ald of the basic iteration process. The index ¢, assumes the following
values:

qg1=2 for o,, (SaB, Sga» gi=1 for Sy 55\;
=0 for o, qp=2for U, ug
g1=1 for W in the symmetrical problem
71 =3 for W 1in the antisymmetrical problem

(1.3)

The stresses and displacements in the basic state of stress can be repre=-
sented in the form of polynomlals in ( , where the degrees of these poly-
nomials increase as the order of approximation increases. Por the first two
approximations the dependence of the stresses and displacements on the vari-
able (¢ 1s determined by Formulas

in the symmetric case
W =t @, B), 2,7 =2,9(,8) @ G =10 (% B) @8 (1.4)
) , : . . ; ;
Sup = Tug M, B). S0P =07 P (0, B) @), 0@ = 5, Do, B) + vl D (2, B)
Ewt® = — v (v, 4+ 15%)
in the antisymmetric case

W =w®(q,8), v,V =(0,"(aB) @o, 6" =01, P (2. B) (ap)

S = Crag (@ B) 0y =55 Y (a, B+ 00, B) @B *9)
' , i . (1)
Gwm = ?;Swm (. B)+ ;;sr*n'(l) (o, B va(’) =—H, at’:& (8

W& = o (a,8)— 2% 8 {7ae™ + 735 =0, 1

The equations that determine the coefficients of these polynomials are in
each approximation analogous to the equations in the classiocal theory [2].
PFor the seroth approximation they are identical with the equations in the
classical theory and can be reduced to a nonhomogeneous biharmonic equation.
In the first approximation, they are reduced to a homogeneous biharmonic
equation, Thus, these coafficients are completely determinate, provided in
each approximation one has two boundary conditions on the edge o = Qg o

The second term in (1.2) represents the boundary-layer state of stresses
which quickly damps with distance from the edge, and can be determined with

the 81d of an auxiliary iteration process [2]. The index a
following values: process [2] ga 8Ssumes the

92=2 for Ougs Saps Suyr pgy Opy Oyy 2=1 for u,, ug, W (1.6

The suxiliary iteration process consists in repeated integration of the
systems of equations for the e torsion and the plane deformation at the
edge. These squations were derived in [2]. Utilizing {1.1) and taking the
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first two terms of the Taylor series for ., H, and #
4., at the point =
the above equations for ¢ = 0, 1, 2 can bpé wraitten 11'{3 the formp * %o

03,5 83,0 EWCaY T
“ap By 388 93,5 ~ _
P at so —gg— + ko gt o 2k Bo* Y  2hg 3, (1
duy"®) o (1) -
E-£———2(1+v)5 (°)=-—-E[H du, ol
aE aB BOT kBO HBOE 33 —
— kgugtV L kﬁoza;B(S—z)]
du,. 8 —
E_B o0 +v)g, (8 = _E[ oW is-1 oIy (s-2)
5% ( ) Say Hy, T ko Hg o (1.7)
B de sV ds {71 5 (s-2)
& g Y . H aB 95, ~ (s— - (g
23 ag Bo aB + kBO HBOF’ a3 - kBO (501(; v 6{iés 1)) +
2¢ 1T (8- ~ (s-
| R TR )
Baaif) a; (s) ag (8-1) = (s-2)
ey g vy By 95 _— _
( 9 g Hyo 33 + Kgo Hpo? BaYB ~ g0, SV - kgles,
T I
3 (& = =
B — o’ —v G + 5,01 =0 (1.8)
oW __ (S () =) LT () ‘oW du _
o (6,47 = (6,5 + 5541 = 0, E ('TF_‘ a“;; )—2(1+v) 5,0 =0
(s-1) = (5-2)
(8) (s () g () = “p ou o wr (5.2
sa v (Gay + Oyy ) =E |: Hﬁo B - kBo H{aog %B + "'p,oua( Ve k,go’éua(s 2 :|

where Hgy = HB la=a and kg = kg ]a=a, 1s the curvature of the edge o= qq-.
Any one of the stredses or displacements can be detrmined in the form

ot — (t) (
QY = Q"+ Q" (1.9)
and it can be assumed that
o) — (- ) —
Q“)_ Qu=Qu"=0 o 10 (1.10)
The quantities Qq) = and Q" can be determined so that (1.11)
—s® _s10) g0 g, 0 0 — L P () T () e
Saly) = S (1) = Sah 0 = S = Ya = Wy =0 Su () = Tar(m) = “p ) =0

n, taking all terms in(1.7) and (1.8 with subscripts (1) or (2), we
obtain a system for the determination of Qti; or Qt‘;) , respectively.

The systems (1,7) and (1.8) lead to harmonic and biharmonic equatlons
(with respect to the variables £ , { ), respectively. They are homogeneous
when 8 = O and nonhomogeneous when s > O . In the half=-strip —1 L <1,
E < U, one must construct for both systems solutions which are damped out
as ¢ - — o and which satisfy the following conditions:

for (1.7)
o = 0l + Saily =0 when {=:t1 (1.12)
for (1.8)
oy —_ _ = (8) — (s) _. —
Ga‘(\'s) = caS;)(l) + 6azﬁts)&) =0, 6"YS) = GYS(S)(I) - 6‘(‘{5(2) =0 when [ =+1 (1.13)

The conditions for the existence of damped solutions of systems (1.7) and
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(1.8) can be written in the following form [2]

1 0 1 a3 E;s—l) ds (Bs—z) = (s-1) __ % (s-1)
8 ks - ) i
SCGa§)|a=od§= Sd&S {C[— Hy, o + kg Hpk o — ko (Saa ' —ogg )+
=1 —00  —1
o 85, (5-1) dsg(s?
+ kﬁgg (Gags 2) __ GBI(?’S 2)):] — g [_HBO BBY “I‘ kBOHBQE_BaY —
B B
- (-1 20T (s-2
- l"‘BOGmS}g )+ kﬂogoa(‘f )]} dt (1'14)
1 0 1 5 5
L ] 83,81 ¥ e 5 (-
st {0 [ S B bt ]
il —o0 —1 -‘

1 1 - ~ - —
. 5 ® ir — d _ 05aé8 1) ok HoE acsaés 2) b (551 _ 5 (6D
ax Jp—g"®> T Bo aB B0~ Bo B — "Bo ( ax BB )+

% (s (s-2)__ 5 (s-2)y]
+ kBoE (Gaa - GBB )J dg (1 ',“—))

(= o ¢ d5g5 054" 5 61 1 gp 23 (5-2)

—_ 8- 8§~
SG“ | B = S dt S[ Hpo b o+ oo a5 — — kg, § ™)+ 2kl § J dz
-1 —00  —1

The conditions (1.14) in the antisymmetric problem and conditions (1.15)
in the symmetric problem yield two sequences of boundary conditions on the
edge q = a5 (£ = 0) for the coefficlents of the expansion (1.2). The bound-
ary conditions on the edge surface

Caq == Ggg = Opy =0, Saa =0qpg =W =0, Uy =ug=W=0 for a =10
which correspond respectively to & free, simply supported, and fully fixed

edge, each yleld three sequences of boundary conditions for the coefficlents
in the expansions (1.2). They can be written in the form [2]

when o = oo (€ =0)

_ (s) s . -1 ( 8)  __
ca(:) + Gaf)u) + ca(;)m) =0, GaBS + Gat,(Bg)(l) + ‘Sag'(z) =0, Ga(\f )+ cscu:l)(l) + Gagr {2) =0

(1.16)
So + Sa (1) T Sale) = O Saf + Sali (1) F Sty =0 WO+ Wi + Wgy@ =0
(4.17)
) G 4 u G =0, ug® fugleot g 0 — 0, W) L W)\ + W, @ =0
(1.18)

where -@=g for the symmetric problem and ¢ =8 — 2 for the antisymmetric
problem.

The arbitray constants of integration of the equations of the basic and
auxiliary iteratlion processes must be used to satisfy the boundary conditions
on g =gq, (£ =0) . In[2] it was shown that these arbitrary constants are
sufficient for satisfying not only conditions (1.16) but also conditions
(1.14) and (1.15).

For the sake of simplicity we will use pB'*) to denote the function deter-
mination of which gives the solution of the system of equations of the basic
iteration process in any approximation . Similarly ¥{$} and @'®) will denote
the functions for solution of systems (1.7) and (1.8), respectively.

The equations determining B (s} and @) are integrated separately.
It is most important (1) to separate also the boundary value problems arising
from the boundary conditions to be satisfied by the above functions, (11) to
fix a sequence of determinations of the functions p) W) and @!s) and
éiii) to formulate the boundary conditions separately for each of these func-
ons.
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Below, we have considered this question for the functions B©®, ¥(® @@
and B(U, which suffices for the purposes of thils paper. (The antisymmetric
and symmetric problems have been treated separately).

. Note . In the following, the notation (1.16), means Equations (1.16)
or 8 =k ,

It is assumed that the quantities (j) and QY vanish as g ~ — o
faster than an arbitrary negative power of .

2. In the antisymmetric problem with a free edjge. the determination of
the constants of integration in p© pl) ¢© ¢l §0 and @ requires
the use of conditions (1.16), , (1.16) and also condttions (1.14),, (1.1%),
zhich, with the aid of (1.16), (1.19) &nd (1.11), can be transformed into
he form

-t

s (1)

[: 2+ 4

df = 0
e, % (2.1)
1

T I (0)
{g {HBO ag P Caae) " %8 ) )] -

i

! 0
\ &l |, 4t = &da
R RS

aa (2)
=
T s
—t [H@O ‘—%(1) - kBOGGL(YO)(Z)jI} dg (2-2)
%c (0 ( d ‘ i ‘9%5031) ko g (©
P aadr= | 48\ | Hag =55 kg0, Tl [ a2 @3)
=1 “w 1 .
1 0o 1 _—

s gr e (ax [m 0 o 0 s e @
A fgeex, e Bo a3 gy BOE B + BOGU.Y —kﬁogcay (2)]'1C (2'4)

Let us consider the auxiliary Problem 1. We will construct the solution
-Q[ll of the homogeneous system of Equations (1.7).; in the half-styip
S1<L<1, E<<0, which satisfies the conditions

1] - By = [l - 5
% = ¢ o= le.r-o ¢ (2.5)

The solution of this problem 1s easily found, for example, by separation
of variables, in the form

s, =avDl/ ag, sl = 2wt/ az, Bugl =2(1+v) il
where the harmonic function yl1] 15 represented by the series
e €
phi X0 16(=) o @e—t)at g, (2n —1) al (2.6)
< (2n—1pnd 2 2
n=1\
Then, as follows from the second conditlon (1.16), and the Equation (1.5),
the function y(® 1is determined by Equation
YO — ¢ O (g, B) ¥ (2.7)

Now we will consider the sequenoce of boundary conditions to be imposed.
From Equation (2.1) and keeping (1.5) in mind, we obtain

5, =0  for a=a (2.8)

Then as it follows from the first and third conditions in (1.16), and from
(1.11) that 30y = 5,0, =0 for E=0 (2.9)
and hence Q(o)(ﬂ) = 07 or (D(O) =0 (2.10)

The functions B will be detrmined by (2.1) and (2.3), which, with the
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aid of (2.6), (2.7) and (2.10), can be represented in the form

1 1
. 2 61:
{ - (© 2 s _ 0 _ 4
& 0,0, _, d=0, &_GM) I T (aT = H, a_e) (2.11)
1 X1 B = B :
The solution of system (1.7), will be written in the form
Q( (1)_1(1) ol L Q*(l) (2.12)

where Q[!J is the solution of Problem 1, and QY 18 the particular solu-
tion of the nonhomogeneous system (1. 7)1 that satieries the homogeneous con=-
ditions on £ =0 ,

The mnotion B will be determined by taking the conditions
(2.22 (2.4) into account. Keeping (2.12), (2.6), (2.7), 2.10), (1.7)
and (1.8), in mind, the above conditions can be written in the form

ot {0 < 1
W gr—_2 4% A=343 _1 - 26000
§f° =TT | w2 —1F -
1
v, 2 ©)
5@ g4 2 ==z "eofaa
El o = 3 asB A=, 3 68 x=0

Then we determine w(l) by Formula (2.12) and @) by taking boundary con=
ditions (1.16), into account. It is easily seen that the process of deter-
mining the functions is recursive in nature, i.e. all quantities required at
the nth stage are found from the preceding stages.

vhen the edge is simply supported, we consider the boundary conditions
(1. 17),, (1.17), and the third equation in (1.17), which can be written in
* the form

' — 2_12 2 (1,0 4 1) + W, 0 =0 for a =a,(t=0) (2.44)
and the damping conditions (2.1) and (2.2). fead of Equation (2.3) we
will here use the damping condition obtaﬂ.ned in

2— _ (0) —
- Scsc““‘” oyt — s S (G2 — 1) Wy, _,dt =0 (2.15)

~1,

We will eliminate the quantity »® from (2.14) by means of (2.15) and
the fact that 0., | _, =0. as a conaequenee of (2 1) and (1.15). Then
from (2.14) and The first equation in (1.1 16), we obtain the bo\mda.ry condi-
tions for {0 in the form

Sy =0 W =— '1?)_ e (1 —507)  tor E=0(@=a)  (2.46)

Let us now consider the auxiliary Problem 2. We will construct the solu-
tion QI[2] of the homogeneous system (1.8), in the half-strip —1 << (<1,
£ << 0 which satisfies the conditions

= 2] = 2] =
ca['\?] |C=-4_-1 = GY[Y2] =1 =0, Q[ﬂ Ig:—oo =0, Gagn IE=0 =0, EW[ ’E,—_—o =1— 5;’

Then the quantities Q©®() (the function @ ) is determined by Formula

Q@ =— _r,;‘”(m0 g) Q2] (2.17)

Now we will persue the successive determinations of the functions B®:
B(1) y( and Q)(O The function p(0) will be determined by (2.1) and the
third equation in (1 17)e which has the form

1
' — 0, \ G5 =0 qor a=uq, (2.18)

s

—1
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Then we determine W by Formula {2.7) and @9 by Formula (2.17 The
function B can be determined from the third condition in (1.§7’)1 zmd con-
dition (2.2}, which is easily put in the form

1
2
wh =0, K o dg = — 2.4

—1

3%gl_2k B 1@
3sg 3 "Ro™ “pB

for a==a, (2.19)

(2= 32 el )

-1

It is easlly seen that in this case the process of determining the bound~
ary conditions is r? ursive, When the edge is rigidly fixed, the determina-
tion of g0 O @l ang B 1s achieved by using conditions (1.18),,
{1.18),, §2.1‘&) and the damping condition (1,.14), which by virtue of t1.9)

and (1.11) can be written in the form
1 1
— ) _
S Qﬁa{;’%z) B g =0, S caifo(z) fgmo‘i‘: =0 (2.20}
-1 Y

Now we will treat the auxlliary Problems 3,4 and 5. We will construct
the solution of the homogeneous system (1.8), in the half-strip —1 <C§ < 1,
—L<ELO ( 7 is a sufficlently large number) subject to conditions’

Sav fomy = Ot hema = Ualge o =W e oo =0
, IEstO’ Wi&a =4 for problem 3
Uy fa:o'”o‘ ngm =& for problem &4
el =t Wl =0

for problem 5

The solutions of Problems 3, 4 and 5 will be denoted by (U3l ol and
0[5} s respectively.

Then, by virtue of {2.14), {1.5) and the first equation in {1,18), we have
Q™ = — v (a0, B) QP 7 (1, (oor B) + 7l (xar B)) QL — 2,1 (00, B) QLT (220)

Substituting (2.21) into {2.20) and solving the resulting equations for
2@ and )., we have

W' = K ,2% (2,9 + 5", 2, V= ;E{:afg’ + 1y tor a=ap (2.22)

where the constants ¢ and » can easily be determined if the scolutions of
Problems 3, 4 and 5 have been found,

Now we wlll persue the successive determinations of B® p) w® ang @¥
The function pB{® 4is determined by the first and third conditions in (1.18),
which have the form

2 =, u =0 teria=20, (2-23)

{The second condition in (1.18), is satisfied identleally). We will deter
mine the function w(® with the aid of the second condition in (%.18 . It
is evident that Ug)lie=o = 0 by virtue of the third equation in (1.18), and
thus ¥® == 0. Now Wwe will determine B{1) with the ald of the third equation
in (1.18), and the second condition in (2.22}, i.e. the conditions

wB =0, 2 W =C 5%(”‘953) L) ter a=og (2.24)

The function @® will be dete d by means of (2.14) and the first
equation in (1.18);. Moreover, @(0J can be expressed in terms of the solu-
tions of the Problems 3, & and 5 by means of Formula {2.21).
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3. Now we will turn to the question of constructing approximate methods
of refining the classic bending theory of plates.

From the viewpoint of asymptotic methods, the problem of constructing
various approximate theories of bending (and extension) of plates can be
regarded as a problem of constructing a certain number of approximations in
the basic and the auxiliary iteration processes. In [1 and 3 to 5] it was
shown that, in the case of a straight edge or a curved free edge, the clas-
sical theory 1s equivalent to the problem of constructing the zeroth approxi-
matidn of the basic iteration process. Below, 1t has been shown that this
is also valid for the present variants in the case of an arbitrary smooth
curvilinear boundary.

As is well known [1 and 2], the equations of the zeroth approximation in
the basic iteration process are identical with the equations of the classi-
cal bendirg theory of plates. It is not difficult to verify that the bound-
ary conditions for p(0) are alsn identical with the boundary conditions of
the classical theory.

For 1 = 0, 1 we will employ the following expressions introduced in [2]:

1 1
M =r S Loag'dE . (B, Hg =# S CRLS
—1 -1
@) _ i ¢ (@) @ g '  aw®
N, =hg%yﬂ (xB)y v = @ 5y _?g.(m

—1
wo® = K3 )

Then, keeping (1.5) in mind, Expressions (2.11), (2.18) and (2.23) lead
simply to the usual boundary condltions of the classical theory

for a free edge H©

a
M=o, Na(°>+T“5 =0 for a=ugq,
B

for a simply supported edge
MO=0 wD=0 tor a=aq,

for a fully fixed edge

6100(0)

ds, -

It should be pointed out that in contrast to the classical theory the
zeroth approximation In the baslc lteration process can also be used to
determine the stress O, (1t may be substantial, for example, in certain
anisotropic materials).

The remaining approximations in the basic iteration process and all approx-
imations in the auxiliary iteration process give the corrections to the clas-
sical theory. Therefore, by limiting oneself to various numbers of approxi-
mations of the basic and auxiliary iterative processes, one can construct
various approximate theories which with the corresponding degrees of accu-
racy will decrease the error in the classical theory either at the edge or
at a distance from the edge. Of all these theories, we will only consider
two 1n this paper. The flrst makes it possible to refine the results of the
classlcal theory near the edge of the plate, which is important for example
in problems on the stress concentration near holes. The second theory
refines the results at points distant from the edge.

As follows from (1.2) the order of the stresses and displacements [3]
determined by the zeroth approximation in the basic iteration process will be

w'® =0, 0 tor a=aq,

Suar Sapr Opg ~ - T Sgy~ k7, Gyy ~ B°, Uy Ug ~ h2, W ~h™3 (3.1)

Near the edge of the plate, boundary-layer stresses determined by the
auxiliary 1teration process will be superposed on the basic state of stress.
In the auxiliary iteratlon process the quantities U,p» Vg, and ug can be
determined from the equations for the edge twisting (y(®)y and the quantities
Vgar Ugyr Opar Oy ¥, and W are determined from the equftions for the plane
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deformation (), at the edge. Moreover, it follows from Section 2 that,
depending on boundary conditions on the edge with g = 0 , one (but never
both simultaneously) of the states of stress at the edge can be absent. As
1s found from (1.6¥, the orders of the stresses and displacements for the
zeroth approximation in the auxiliary iteration process wlll be

Saar Sap Savr g avr Gy~ k72 Uys Ugs W~ h-t (3.2)

It follows from (3.1) and (3.2) that, for any of the considered variants
of boundary conditions, the error allowed by the classical theory of the
edge of the plate will be small in the case of the displacements. However,
in the case of the stresses (all or some) the error will be of the same order
as in the basic stresses in the classical theory. Thus, when it is very
important to determine the stresses at the edge of the plate, it is thsuffici~
ent to limit oneself to the classical theory for the construction of the
state of stress even in the zeroth approximation.

The asymptotic method makes it possible to very simply formulate an
approximate theory that allows the construction of the zeroth approximation
for the state of stress either removed from the edge or at the edge. It is
easy to see that the essence of the method is that one superposes boundary-
layer stresses determined by the zeroth approximation in the auxiliary iter-
ation process on the state of stress determined by the classical theory.
Using the notation B w) @' the problem of setting up such a theory
can be fomm(lated as the problem of constructing the following functions:
B® and ¥'® for the free edge, B Y© and @ for the simply supported
edge, or g0 and @ for the fully fixed edge. (The boundary conditlons
for these functions and the formulas with which one determines w(® and @®
were given in Section 2). The error in such a theory for the stress will
everywhere have the order A compared with »°.

The asymptotic method also enables one to very simply set up an approxi-
mate theory that makes the classical theory more exact only at a distance
from the edge. Such a theory will comprise the first two approximations of
the basic iterative process (functions B©® and B(1)) As has been shown
earlier [1 to 3], the %onstruction of the first egpproximation in the basic
iterative processes (Bu) reduces to the solution of a homogeneous biharmo-
nic equation (in g8 ) with nonhomogeneous conditions which, in the termino-
logy of the classical theory, can be represented in the form

for the free edge

oH O AH W Py
B _ (0) —
A __Ah_,a;‘_ﬁ, N 58 = — dh 2 (kgof,8")  tor a =y
B B B
for the simply supported edge
oOH (0)
weD =0, MM=_—hA __a_SEE_ — Bhg hMY) - for O =0,
A
for the fully fixed edge
(1) 2Eh8
W _ dwy ) v %) () g0 (D: _ < )
vl =0 = Copryy MM H M)t = Ta—v)

combining B and B!, we obtain an approximate method of refining
theBycluuienl bending theory for plates that will consist in the construction
of a solution of the equations of the classical theory subject to the follow-
ing modified boundary-value conditions (to an accuracy of terms of the order
n® compared with h°),

for the free edge
OH .5
ass

for the simply supvorted edee

]
M, + Ah s Nyt 5 (Hop o+ AhkigeHog) =0 tor a=a

oH
M, + Ah asgﬁ + BkghMg=0, w,=0 for 0=04
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for the rigldly fixed edge
ow, v
wy =0 A C " h(M_--M)=0 for o0 =Q
T B, 2D (T —+%) (Mg Mp) 0
The error of such a theory will have the order n® compared with »°. The
attempt to further refine the classical theory (determination of errors of -
order A2 compared to AK°) leads to the necessity of adding corrections both
to the equation of the classical theory and to the associated boundary con-
ditions [2 and 3].

4. In the symmetric problem the constant of integration in the equations
rfor B® w( and ‘@) must be used in order to satisfy the boundary condi-
tions (1.16) to (1.18) and the damping conditions (1.15). Without dwelling
on the transformations which are analogous to the transformations for the
antisymmetric problem, we will formulate approximate methods of refining the
classical theory at the edge and at a distance from 1t.

In the case of a free edge, the classical theory (the zeroth approximation
in the basic iteration process) has at a distance from the edge an error in
all stresses of the order A°® compared with »°. At the edge the error in
Oqp. 8nd Op, 18 of the order »® and for 0,,, 0,,, Oz; &and o . the error is
of the order » compared with »n°,

Therefore, when the plate has free edges the classical theory enables one
in the zeroth approximation to construct states of stress either at a dis-
tance rom the edge or at the edge. If the edge is simply supported, then
at a distance from it the error in the calssical theory in all stresses is
of the order h, and at the edge the error in O, Oyys Op3 and O, 18 of
the order »°, and in 0,3 8nd Og, it 1s of the order 5 compared with »°

The approximate method, which makes 1t possible to construct in the zeroth
approximation the state of stress not only at a distance from but also at the
edge, consists in the construction of functions B and @®® from the follow-
ing boundary condition

tor B(®

ax’

Tago) — Tag]) =0 for O = 0,
for OO

Saglny =0 EWy)® = ViTgg)  tor £=0 (a=0g)

The approximate theory that allows the refinement of the classical theory
only at a distance from the edge consists in the construction of a solution
of the equations of the classical theory subject to the conditions
av .

aﬂB =0 for a=gq, (Al =Y g gaagﬂ
1

Toq—hAvhg Tgg =0, Tpg+ hArv . 5 ==Od§)

where Ga§] 1s the solution of the homogeneous system (1.8), subject to the
conditions

=—1
The error in such a theory at a distance from the edge has the order »?

compared with ne.

In the case of a fully fixed edge, the construction in the zeroth approxi-
mation of the state of stress at a distance from the edge and at the edge
necessltates the determination of the functions B and @0 subject to the
following boundary conditions

forl B(o)

s [ = g L8] =0, Qfel lE=__°° =0, Gmm L=0= 0, wiel]

oY lg=+1 Y =1 E=0

va(o) = vB(O) =0 for O =ap
tor @0
Eu, (= —Bv (R +76)  EWe O =l (1 + ")  ter £ =0
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In order to refine the data of the classical theory at a distance from
the edge (the derivation of corrections of order % compared with »°) one
must construct a solution of the equations of the classical theory subject
to the following modified boundary conditions

vg=0, Ev,—hBv(t,,+Tg5)=0 for a=o0p
1 1

(5= § o] (§ o

—1

"))

and QU] and QI8 are solutions of system (1.8), with the conditions

Sax l§=i1 = Oy l?.=i1 =0, Q |Ez—oo =0
=—1{, u, ’E=o =0 for Problem 7
=1

li=o

w |, =0,
=0

Uy Ji:o for Problem: 8

5. The above-considered symmetric problem is the problem of the extension
of a plate by forces applied to 1ts faces. Now we will consider the physi-
cally more Ilnteresting problem of the extension of a plate by forces applied
to ite edge surfaces.

We willl assume that the faces of the plate are stress~free
Oy = Ogy = Oyy =0 for [ ==+1
and the conditions on the edge a = a, (£ = 0) have the form
Oaa = a(ao’ B1 C), Gaﬁ = b(a.o, Br g)s Ouy = c(do, Bv C) for o ==y

It is assumed that g and » are even functions of ( and , 18 odd,
and that they do not depend on & . The generalization to the case where
these functions are proportional to some power of h or can be represented
in the form of polynomials of » does not present difficulties for the
linear problem,

It can be shown that in the present case one must.choose the following
values for g, and ¢.
1= for Sy,s Ogps Opgr  J1=—1 for S,y Ggy

gi=—~2 for 6., =0 for Uy, Ug, Gq1=— 1 for W

gy = 0 for Sgur Tupr Oavyr Oppr Ogyr Syy
gy=—1 'tor 4y g W

The system of equations for the basic state of stress comprises the usual
equations of the plane problem and when g = O, 1 can be reduced to a homo-
geneous biharmonic equation, The equations for the boundary-layer stresses
have the form (1.7) and (1.8). The boundary conditions for the coefficients
of the expansion (1.2) are obtained with the ald of a procedure written in
{1 and 2] in the form

) (&) __ & (s) (s) (3 __p=s
Sas) + Sus W FOaa =" Tag T Supn T Oupie="?
SV Soly F0aS iy = tor a=u
(@@ =a, »=b, @P=c, ¥ =p%=cH=0) (k>0)

Adding here the damping conditions (1.15) we obtain five sequences of
boundary conditions on g = a, for the functions B® ¢ and &

The approximate theory that enables one to refine the results of the clas-
sical theory near the edge of the plate consists in the comstruetion of
functions B(® w(® and @© subject to the following boundary conditions:
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o . S adf, 1,0 bdl  for a=a,

tor B 1 ! 1 :
8 =ZS

1

for WO L&
sy =b—5 { bal e £=0

—1

0 _ —
Ga(zozg) —=a— '2— S a dgi Ga(y )(2) =¢c for £ = 0
-1
The error of such a theory for the stresses everywhere has order »n com-
pared with p»°.

It should be noted that in the case when & and » do not depend on ¢(
and ¢ = 0, the function w0 and @ are identically zero and the state of
stress in the zeroth approximation far from the edge as well as on the bound=-
ary can be constructed with the ald of the classical theory.

The approximate theory that allows one to refine the classical theory only
at a distance from the edge consistes in the sllution of the (homogeneous)
system of equations of the plane problem with the following boundary condi-
tions on q = q

1 1
1 _1 . 8c]
raa_—_? S [a-——tho(,c] dg, "¢B“§ Sl[b hvga d;
_1 f—

The error in this theory at a distance from the edge has order »® com-

pared with R°., If ¢ = 0, this theory colncides with the classical theory.

The author offers his deep gratitude to A.L.Gol'denvelzer for proposing
the problem and for the assistance rendered during the course of the work.

BIBLIOGRAPHY

1. Gol'denveizer, A,L., Postroenie pribllizhennoi teorii izgiba plastinki
metodom asimptoticheskogo integrirovaniia uravnenii teorii uprugosti
(Derivation of an approximate theory of bending of a plate by the
method of asymptotic integration of the equations of the theory of
elasticity). Fw¥ Vol.26, ® 4, 1962,

2, Gol'denvelzer, A.L. and Kolos, A.V., K postroeniiu dvumernykh uravnenii
teoril uprugikh tonkikh plastinok (On the derivation of two-dimensional
equations in the theory of thin elastic plates). PW¥ Vol.29, M1, 1965,

3. Kolos, A.V., Ob utochnenil klassicheskoi teoril izgiba kruglykh plastinok
(On a refinement of the classical theory of bending of circular plates)
PNN Vol.28, W 3, 1964,

4, Prledrichs, K. and Dressler, R.F., A boundary-layer theory for elastic
plates, Communs.pure appl.Math.,, Vol.l4, N 1, 1961

5. Relss, E.L. and Locke, S., On the theory of plane stress. Q.appl.Math.,
Vol.19, W 3, 1961.

6. Gusein-Zade, M.I., Ob usloviiakh sushchestvovanila zatukhaiushchikh
reshenil ploskol zadachi teorii uprugosti dlia polupolosy (On the con-
ditions of existence of decaying solutions of the two~dimensional prob-
lem of the theory of elasticity for a semi-infinite strip). Pm¥ Vol,
29, ® 2, 1965.

Translated by D.B.M.



